If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2-45y-50=0
a = 15; b = -45; c = -50;
Δ = b2-4ac
Δ = -452-4·15·(-50)
Δ = 5025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5025}=\sqrt{25*201}=\sqrt{25}*\sqrt{201}=5\sqrt{201}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-5\sqrt{201}}{2*15}=\frac{45-5\sqrt{201}}{30} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+5\sqrt{201}}{2*15}=\frac{45+5\sqrt{201}}{30} $
| 3y^2-9y-10=0 | | 9w+17=7w=30 | | 3(6-4x)=-11x+3 | | 12.8=-3.2x | | 5y+-7=10 | | -2m+5=-25 | | 4k+20=5k+9 | | (2x+10)=(2x-30) | | 2x/4=-1 | | 3x-5(x-5)=-8+4x-15 | | 6+4d=14 | | x-43=2x-91 | | 5(x+6)+4=7x-10 | | 52=-x/5 | | 3a-49=4a-86 | | 84=4w+8 | | (3×-6)+x+30=180 | | 10/y+5+2/y=7y-5/y^2-25 | | −4x+5−3=−7 | | -9=3-y | | 3x-48x=-50 | | X•218-x+218=180 | | 100+3/20x=400 | | 2.5x-18=x+2 | | 14v=48+8v | | 13x-8=(-34) | | z/3=1.5/4.5 | | 5=-1/2x-2 | | Y=-5y=-1/2-2 | | -6r+2r=-25r | | 3b(8)+(-2)(7)b=2 | | -7x—3x+2=8x—8 |